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Abstract: Surgically-created blood conduits used for chronic hemodialysis, including native arteriovenous fistulas 
(AVFs) and synthetic AV grafts (AVGs), are the lifeline for kidney failure patients. Unfortunately, each has its own 
limitations; AVFs often fail to mature to become useful for dialysis and AVGs often fail due to stenosis as a result of 
neointimal hyperplasia, which preferentially forms at the graft-venous anastomosis. No clinical therapies are currently 
available to significantly promote AVF maturation or prevent neointimal hyperplasia in AVGs. Central to devising 
strategies to solve these problems is a complete mechanistic understanding of the pathophysiological processes. The 
pathology of arteriovenous access problems is likely multi-factorial. This review focuses on the roles of fluid-wall shear 
stress (WSS) and endothelial cells (ECs). In arteriovenous access, shunting of arterial blood flow directly into the vein 
drastically alters the hemodynamics in the vein. These hemodynamic changes are likely major contributors to non-
maturation of an AVF vein and/or formation of neointimal hyperplasia at the venous anastomosis of an AVG. ECs 
separate blood from other vascular wall cells and also influence the phenotype of these other cells. In arteriovenous 
access, the responses of ECs to aberrant WSS may subsequently lead to AVF non-maturation and/or AVG stenosis. This 
review provides an overview of the methods for characterizing blood flow and calculating WSS in arteriovenous access 
and discusses EC responses to arteriovenous hemodynamics. This review also discusses the role of WSS in the pathology 
of arteriovenous access, as well as confounding factors that modulate the impact of WSS. 
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INTRODUCTION  

 Two types of long-term hemodialysis vascular access 
exist: the arteriovenous (AV) fistula and AV graft. For 
patients with chronic kidney disease (CKD), long-term 
maintenance hemodialysis may be required as the disease 
progresses and kidney fails. Chronic hemodialysis vascular 
access is achieved through either the surgical creation of a 
native AV fistula (AVF) or the implantation of a synthetic 
AV graft (AVG) made of expanded Teflon¨  (polytetrafluoro-
ethylene) [1]. In October 2010, 57% and 20% of chronic 
hemodialysis patients in the U.S. use AVFs and AVGs, 
respectively [2], and the rest use catheters. Without long-
term vascular access, the only safe, clinically used method to 
obtain sufficient blood flow rate for hemodialysis is through 
a central venous catheter with its inherent risks. Although 
AVFs and AVGs are the lifeline for patients who require 
maintenance hemodialysis, each has its limitations: AVFs 
often fail to mature to become useful for dialysis and AVGs 
often fail due to stenosis as a result of  
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neointimal hyperplasia (NH), which preferentially forms at 
the graft-venous anastomosis. Currently no clinical therapies 
are available to significantly improve the problems of AVF 
non-maturation or prevent NH in AVG. The pathology of 
AV access problems is likely multi-factorial, and this review 
focuses on the roles of fluid-wall shear stress (WSS) and 
endothelial cells. In AV access, shunting of arterial blood 
flow directly into the vein alters the hemodynamics in the 
vein drastically. These hemodynamic changes are likely 
major contributors to non-maturation of an AVF vein and/or 
formation of NH at the venous anastomosis of an AVG. 
Endothelial cells line the inner surface of the blood vessel 
walls, separating blood from the other vascular wall cells and 
also influencing the phenotype of these other cells. In AV 
access, endothelial cells are directly exposed to aberrant 
WSS and their responses to aberrant WSS may subsequently 
lead to AVF non-maturation and/or AVG stenosis. 

 The relationship between aberrant WSS and undesired 
vascular remodeling is well-established in the arterial 
circulation, but not yet in the vein, particularly in the AV 
conduit setting. Studies have shown that local 
hemodynamics clearly contribute to atherosclerosis [3-5]. 
Unidirectional, laminar WSS activates mechanotransduction 
pathways that lead to quiescent endothelial phenotype, 
release of nitric oxide, and down-regulated expression of 
pro-proliferative and pro-inflammatory genes [4, 6-9]. Thus, 
arterial regions where unidirectional, laminar WSS exists are 
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relatively free of the formation of atherosclerosis or arterial 
NH [5, 10, 11]. In contrast, disturbed flow or oscillatory 
WSS, examples of complex blood flow, activates 
mechanotransduction pathways that lead to decreased release 
of nitric oxide and up-regulated expression of pro-
inflammatory, pro-proliferative, and pro-thrombotic genes 
[4, 7-9, 12, 13]. Complex blood flow tends to exist at areas 
of stenosis or vascular bifurcation, and these locations have 
increased presence of atherosclerosis and arterial NH [3, 5, 
10, 11, 14]. Venous NH, which could lead to stenosis and 
even occlusion in an AV conduit, is considered to be a 
primary cause of AVF and AVG failure. Limited 
information exists about the impacts of WSS on AVFs and 
AVGs where aberrant hemodynamics occurs, despite 
extensive research on these concepts in arterial NH and 
atherosclerotic vascular disease. 

 The specific objectives of this review are as follows: 

¥ To provide an overview of the major clinical 
problems for chronic hemodialysis vascular access. 

¥ To discuss the role of fluid-wall shear stress in the 
pathology of arteriovenous access failure. 

¥ To provide an overview of methods for characterizing 
blood flow and calculating shear stress in 
arteriovenous access. 

¥ To discuss hemodynamics in arteriovenous access. 

¥ To provide an overview of endothelial cell responses 
to physiological and arteriovenous hemodynamics. 

¥ To discuss confounding factors modulating the 
impact of shear stress on venous remodeling. 

¥ To consider additional relevant factors beyond shear 
stress and endothelial cells. 

MAJOR CLINICAL PROBLEM S FOR CHRONIC 
HEMODIALYSIS VASCULA R ACCESS 

 The AVF is the preferred method of long-term 
hemodialysis vascular access, because it uses native blood 
vessels to create an AV conduit, could last for many years, 
and has few complications when compared to synthetic 
AVGs. However, AVFs may take months (approximately  
3-6 months) to mature to become usable, and up to 60% of 
AVFs fail to mature [15]. The AVG, made of synthetic 
expanded polytetrafluoroethylene (ePTFE), provides 
sufficient blood flow rate needed for dialysis within weeks 
(approximately 2 weeks) after implantation, but is inherently 
subject to complications related to foreign body response. 
The central venous catheter (CVC) is only recommended for 
short-term use due to high rates of infection, and is used as a 
transitional access for patients who have received AVF 
creation or AVG implantation surgery but need dialysis 
before the AV conduits become ready. The tunneled CVC 
has a subcutaneous cuff that could potentially render it 
suitable for long-term use (months to years), but this is not a 
standard practice due to the many complications associated 
with CVCs [16]. All three types of vascular access produce 
aberrant flow conditions that could lead to neointimal 
hyperplasia, thrombosis, stenosis and eventual occlusion. 
The focus of this review is on AVFs and AVGs. 

AVF Non-Maturation  

 AVFs are usually created in the forearm between the 
radial artery and cephalic vein or in the upper arm between 
the brachial artery and the cephalic or basilic vein. The 
KDOQI guideline for pre-surgical arterial diameter is >2.0 mm 
[17]. The KDOQI guidelines of the post-surgical, mature 
AVF vein criteria are venous diameter >6.0 mm and flow 
rates >600 ml/min with a depth beneath the skin surface of 
approximately 0.6 mm [17]. AVFs are the preferred mode of 
long-term vascular access because once they mature and 
become functional, they have the least complications. In the 
U.S., primary patency rates in AVFs are approximately 56% 
at 1 year and 40% at 2 years [18], and intervention rates in 
AVFs are 0.06-0.57 interventions/year [19]. The main 
problem of AVFs is that many fail to mature and become 
clinically usable [20]. The etiology of failure can be 
separated into acute failure (such as thrombosis) and chronic 
non-maturation. Non-maturation, defined as an inability to 
achieve clinically necessary blood flow rate during two 
needle hemodialysis within two to four months after AVF 
creation surgery, is the primary cause of AVF failure, with 
recent studies reporting 20-50% [19] and even 60% non-
maturation in a multicenter randomized trial that had 1284 
patients [15]. Several studies have investigated the specific 
blood flow rates and the structural changes of blood vessels 
that are associated with AVF non-maturation. For example, a 
few studies reported that the insufficient dilation of blood 
vessels and the formation of NH are responsible for at least 
some AVF non-maturation [21-24]. Krishnamoorthy et al. 
reported that vascular stenosis often occurred in the venous 
segments of porcine AVFs that did not adequately mature 
[25], and a recent clinical study by Allon et al. showed that 
post-operative stenosis is associated with AVF non-
maturation [26]. 

Neointimal Hyperplasia in AVG  

 A synthetic AVG is surgically created usually in the 
forearm between the radial artery and cephalic vein. One of 
the clinical criteria for AVGs in the U.S. is a blood flow rate 
to the hemodialysis machine of >350 ml/min [27]. When 
compared to AVFs, the critical problem of AVGs is their 
low primary patency rate, approximately 38% at 1 year and 
25% at 2 years, as reported in a clinical study of 1574 
patients [18]. In 90% of AVG patency failure cases, acute 
failure due to thrombosis is attributed to stenosis caused by 
NH [28]. In a study of 90 subjects, NH in 58% of AVG 
patients was seen at the graft-venous anastomosis or within  
1 cm up- or downstream of the venous anastomosis; in 
contrast, only 4% of AVG patients had NH at the graft-
arterial anastomosis and 19% in the peripheral basilic vein, 
with the rest primarily in upstream proximal veins [29]. 
Currently, stenosis in AVGs is largely treated with balloon 
angioplasty, but this procedure induces restenosis due to 
vascular wall injury. A clinical trial showed that the use of 
balloon angioplasty plus placement of a stent graft is 
superior to balloon angioplasty alone for the treatment of 
stenotic dialysis grafts [30]. 

 The mechanisms behind AVF non-maturation and/or 
AVG NH are not yet completely understood, but likely result 
from aberrant fluid-wall shear stress affecting vascular 
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remodeling and endothelial cell functions, which are 
discussed below. 

ROLE OF WSS IN THE PATHOLOGY OF ARTERIO -
VENOUS ACCESS FAILURE 

 The pathology of AV access problems (i.e., AVF non-
maturation and AVG stenosis) is likely multi-factorial. For 
example, surgical trauma, uremia and aberrant 
hemodynamics may contribute to AV access problems in 
both AVFs and AVGs. In the case of AVG, the presence of 
ePTFE material (hence the foreign body reaction and 
inflammation) and the mismatch of mechanical properties 
between the rigid ePTFE and compliant vein tissue may also 
play a role. In AVFs and AVGs, shunting of arterial blood 
flow directly into the vein alters the hemodynamics in the 
vein drastically. This review focuses on hemodynamic 
stresses, specifically WSS, because WSS has the strongest 
association with the formation of arterial NH and 
atherosclerotic lesions in the arterial circulation. Three key 
flow-induced mechanical stresses are exerted upon the cells 
in the vascular wall (Fig. 1): (a) Blood pressure acts 
perpendicularly to the blood vessel wall while the blood 
flows through the lumen; (b) circumferential wall stress is 
caused by the transmural pressure gradient stretching the 
compliant vascular wall [31]; (c) hemodynamic fluid-wall 
shear stress (WSS) is defined as the frictional force per unit 
area that blood flow generates against the luminal surface of 
the blood vessel. The WSS of most fluids, including blood, 
can be calculated using Eq. (1): 

! w = µ
du
dy

 (1) 

where !w is WSS, µ is the dynamic viscosity of the fluid, u is 
the velocity of the fluid along the boundary, y is the height 
above the boundary, and d is derivative [32]. For blood flow 
in a tubular blood vessel, WSS is defined by the Hagen-
Poiseulle equation (also known as the Hagen-Poiseulle Law 
or the PoiseulleÕs law): 

 (2) 

where Q is the bloodÕs volumetric flow rate and r is the inner 
radius of the blood vessel [32]. Thus, WSS depends on a 
variety of factors. For example, WSS increases with higher 
blood viscosity, velocity and volumetric flow rate, and also 
increases as the radius of the blood vessel decreases [12]. 

WSS in Arterial and Venous Remodeling 

 Large arteries have physiological WSS values of  
10-70 dyn/cm2, while physiological WSS levels in large 
veins are 1-5 dyn/cm2 [32, 34]. AVF creation and AVG 
implantation with subsequent shunting of arterial flow into 
the vein results in a drastic increase in WSS on the venous 
wall. While there is a wealth of information in the literature 
regarding the effect of WSS on arterial wall remodeling and 
arterial wall cell function, such information is not yet 
available for the vein. For example, in arteries, 
atherosclerosis preferentially occurs in regions of low and/or 
oscillatory WSS [3], whereas in relatively straight arteries 
where blood flow is usually laminar, chronically increased 
blood flow and WSS result in chronically enlarged lumen 
diameter [35, 36]. These adaptive responses imply that the 
vessel area adjusts to return the WSS levels to the initial 
values [37, 38]. Whether a similar relationship exists 
between the WSS and lumen diameter in the vein is yet to be 
verified by experimentation. There are a few reports linking 
WSS to venous remodeling in the AV access setting, and 
they are discussed below. 

WSS and AVF Non-Maturation  

 Several published findings support a role of blood flow in 
AVF maturation and/or non-maturation [39]. For example, 
pre-surgical blood flow has been correlated with subsequent 
successful maturation, with a clinical study finding AVF 
venous blood flow significantly lower in the non-maturing 
group (n = 10) vs the mature group (n=43) (450 ± 214 vs  
814 ± 348 ml/min, p = 0.003) [39]. Among the several types 
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Fig. (1). Major hemodynamic stresses exerted on vascular wall cells. Pressure and stress are defined as force per unit area. ÔShearÕ stress, 
such as fluid-wall shear stress (WSS), acts parallel to the area and ÔnormalÕ stress, such as blood pressure, acts perpendicularly to the area. 
Cells in the wall also experience circumferential wall stress. This figure was initially published in Kidney International by Nature Publishing 
Group [33]. 
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of hemodynamic stresses exerted on the vascular wall, WSS 
appears to have the greatest impact on vascular responses. In 
a study of AVF hemodynamics by Ene-Iordache and 
Remuzzi [40], both low and high WSS values have been 
associated with stenosis formation and therefore, are 
implicated in AVF non-maturation. However, in this report 
the WSS value was calculated for a large portion of the AVF 
vein [40]. It is important to note that WSS is strongly 
dependent on local wall curvature and physiological flow 
patterns, thus, ideally it would be better to consider the 
relationship between stenosis and WSS at a higher spatial 
resolution. 

WSS and AVG Neointimal Hyperplasia 

 NH is the primary cause of AVG failure and is defined 
by proliferation of smooth muscle cells (SMCs) and 
fibroblasts, formation of microvessels, and matrix deposition 
[41]. The venous anastomosis is the main location of NH in 
AVGs [29]. In an animal study using a porcine model with 
an AVG implanted between the carotid artery and jugular 
vein, it was found that a rapid neo-intimal response occurred 
at the venous anastomosis along with a 50% loss of patency 
at 8 weeks [41]. Although low WSS levels (<3 dyn/cm2) 
have been reported to increase NH in a canine model of 
interpositional artery graft made of ePTFE [42], high WSS 
levels (>50 dyn/cm2) have been reported to increase NH in a 
porcine model of arteriovenous graft made of ePTFE [43]. 
These reports, however, used roughly estimated WSS. In an 
iliac artery to ipsilateral iliac vein porcine AVG model, 
Misra et al. calculated WSS by using PoiseuilleÕs law 
(Equation [2] above) and found that the average WSS value 
in the venous anastomosis normalized at day 3 post graft-
implantation surgery, then increased by day 7 and day 14 
while the mean vessel lumen area decreased as a result of 
NH formation at day 14 [43]. 

METHODS FOR CHARACTE RIZING BLOOD FLOW 
AND CALCULATING SHEAR STRESS IN 
ARTERIOVENOUS ACCESS 

 Hemodynamic parameters such as wall shear stress 
(WSS) and oscillatory shear index (OSI, which describes the 
change in WSS values and blood flow direction during a 
cardiac cycle) cannot be measured directly, as they are 
functions of the local velocity gradient near/at the blood 
vessel wall (see Equation [1] above). The lumen size and 
flow rate are needed for calculating WSS. In previous 
studies, several methods of geometric reconstruction have 
been used (reviewed by Taylor and Steinman [44]), 
including ultrasound, X-ray computed tomography, and 
magnetic resonance imaging (MRI). Local blood flow rates 
have been measured using Doppler ultrasound and phase-
contrast MRI [44]. The pressure, flow rate, and WSS that 
have been reported in the literature for human are 
summarized in Table 1. This table also includes strain, which 
can be used to estimate circumferential wall stress (Fig. 1). 
Pig hemodynamics and vessel size are similar to human and 
have been used extensively in AVF and AVG research [41]. 
The pressure, flow rate, and WSS that have been reported in 
the literature for pigs are summarized in Table 2. As shown 
in both tables, most of the WSS values reported in the 

literature were calculated using PoiseuilleÕs law (Equation 
[2]) and the flow rate and lumen size that were measured at 
specific locations. In order to obtain a detailed spatial profile 
of WSS throughout the entire lumen of an AVF or AVG, 
methods that can give 3D lumen geometry need to be used; 
ideally, these methods should acquire geometry and flow 
information simultaneously. 

 Computational fluid dynamics (CFD) is a method of 
numerical simulation that can be used to determine blood 
flow fields in anatomically accurate vessels. Direct 
measurement of velocity at high resolution in the entire AV 
conduit lumen is difficult, due to the complex geometry and 
high blood flow rates in those regions. Image-based CFD 
simulations in blood vessels were first used to study 
hemodynamics in atherosclerotic carotid [61, 62], coronary 
arteries [63], and abdominal aortic aneurysms [64]. These 
are some of the most clinically relevant and well-studied 
image-based CFD simulations in large arteries. Image-based 
CFD simulations in both AVFs and AVGs have been 
increasing in recent years, with AVF studies focusing 
primarily on fistula maturation, and AVG studies on NH 
development. In AVGs, image-based CFD studies include 
canine [65] and porcine models [66]. In these previous 
studies, hemodynamic values are averaged over a large area, 
even though WSS is dependent on local wall geometry. For 
this reason, there is a need to develop higher-resolution CFD 
studies in order to fully explore the hemodynamics of both 
AVF and AVG. 

 He et al. developed an MRI-CFD protocol that uses state-
of-the-art techniques to characterize blood flow and calculate 
WSS in human AVF (Fig. 2) [46]; this protocol has also 
been used in AVG [67]. The protocol by He et al. uses 
contrast-free MRI, black-blood MRI for lumen geometry and 
cine phase-contrast MRI for flow measurement. These 
techniques have several advantages over the alternatives: (a) 
simultaneous measurement of both luminal geometry and 
blood flow rate, allowing better registration of geometry and 
flow than using other methods that obtain this information 
separately (e.g., computed tomography for geometry and 
ultrasound for flow rate); (b) higher resolution (0.25 x 0.25 x 
2 mm for black-blood, 0.7 x 0.7 x 3 mm for phase-contrast) 
and a larger field of view (180 x 180 mm2 for black-blood 
and 180 x 112 mm2 for phase-contrast images) capable of 
spanning the entire AVF or AVG lumen, as compared to 
ultrasound; (c) MRI does not involve ionizing radiation as in 
computed tomography, so the patients will not be subjected 
to ionizing radiation. This is particularly important for 
patients with compromised kidney function [68, 69]. The 
paper by He et al. was the first to provide a comprehensive, 
detailed profile of WSS of a dialysis AVF (Fig. 3). 

BLOOD FLOW AND SHEAR STRESS IN 
ARTERIOVENOUS ACCESS 

AVF Hemodynamics 

 Immediately following AVF creation surgery, ideally 
there is a rapid increase in blood flow both in the feeding 
artery and the fistula vein, and subsequently WSS increases 
in the artery and vein [22, 25, 70-72]. This increase in blood 
pressure and flow rate causes acute and chronic structural  
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remodeling in the artery and vein, though the vein has 
received more attention in AVF research [72, 73]. Normally 
in a physiological setting, in response to a sudden increase in 
flow rate, the vein and artery would dilate to maintain a 
baseline range of WSS levels (which is 1-5 dyn/cm2 for vein 
and 10-70 dyn/cm2 for artery [32, 34]); the flow-mediated 
dilation is via endothelial-mediated responses such as the 
release of nitric oxide and other endothelium-dependent 
vasodilators [20, 22, 25, 34, 70]. In the arterial circulation, 
low WSS has been linked to atherosclerotic lesion formation 
and increase in intima-media thickening [74], whereas high 

WSS levels are considered to result in the survival of the 
endothelium and decreased intima-media thickening. 
However, it is important to note that in arteries, extremely 
high WSS levels around 1000 dyn/cm2 can usually be 
attributed to stenosis and thrombosis [75, 76]. 

 It has been proposed that high WSS levels 
(approximately 25 dyn/cm2 in the vein [22]) result in large 
vessel diameters and lack of NH, whereas low and/or 
oscillatory WSS levels (<10 dyn/cm2 in the vein [40]) result 
in small vessel diameters that are attributed to insufficient 

Table 1. Hemodynamics in human arteriovenous fistula (AVF), arteriovenous graft (AVG), arterial bypass graft (ABG), artery 
and vein. 

 

Human Location of 
Measurement Pressure (mmHg) Flow Rate 

(mL/min)  
WSS 

(dyn/cm2) 
Strain (Unit -

Less) Methods 

AVF 

Radial Artery 100 
a(1 week) [45] 

777 
(4 months) [46] 

 
519 

(5 months) [46] 
 

506 
(7 months) [46] 

30 
(6 weeks) [47] 

bn/a 

Pressure transducer [45], 
MRI for flow rate [46], 
ultrasound for lumen 

diameter [47], WSS by 
PoiseuilleÕs law [47] 

Cephalic Vein 
80 

(1 week) [45] 

861 
(1 week) [48] 

 
632 

(4 months) [46] 
 

304 
(5 months) [46] 

 
302 

(7 months) [46] 

80-2500 
(4 months) [46] n/a 

Pressure transducer [45], 
MRI for flow rate [46], 

ultrasound for flow rate [48], 
WSS by cCFD [46] 

AVG 

Brachial Artery 
80-100 

(4 weeks) [49] 
1528 

(6 weeks) [50] 
51 

(6 weeks) [50] n/a 

Pressure transducer [49], 
ultrasound for flow and 

lumen diameter [50], WSS by 
PoiseuilleÕs law [50] 

Cephalic Vein 
80-100 

(4 weeks) [49] 
1277 

(6 weeks) [50] 
24 

(6 weeks) [50] n/a 

Pressure transducer [49], 
ultrasound for flow and 

lumen diameter [50], WSS by 
PoiseuilleÕs law [50] 

ABG 
(femoral-
femoral) 

Upstream 
Anastomosis n/a n/a n/a n/a n/a 

Downstream 
Anastomosis 

75 
(during surgery) 

[51] 

135 
(before surgery) 

[52] 
1-30 [52] n/a 

Pressure transducer [51], 
ultrasound for flow rate [52], 

WSS by cCFD [52] 

ABG 
(femoral-
popliteal) 

Upstream 
Anastomosis 

75 
(during surgery) 

[51] 

237 
(6 weeks) [53] 

5-30 
(6 weeks) [53] 

0.7 ± 0.4% 
(3 months) [54] 

Pressure transducer [51], 
ultrasound for flow rate [53], 

WSS by cCFD [53], 
ultrasound for strain [54] 

Downstream 
Anastomosis 

75 
(during surgery) 

[51] 

237 
(6 weeks) [53] 

5-30 
(6 weeks) [53] 

0.6 ± 0.3% 
(3 months) [54] 

Pressure transducer [51], 
ultrasound for flow rate [53], 

WSS by cCFD [53], 
ultrasound for strain [54] 

Radial 
Artery n/a 

143 [22] 
101 [48] 

70 [55] 
30 [48] 5 [55] n/a 

Intravascular flow probe [22], 
ultrasound for flow rate [48], 
fluorescent particle tracking 

for WSS [55] 

Cephalic 
Vein n/a 10-18 [56] 5 [20] 1-2 [34] n/a 

Plethysmography for pressure 
[56], ultrasound for flow rate 

[20], WSS by PoiseuilleÕs 
law [34] 

Notes: (a) Unless otherwise specified, time in parenthesis is post-surgery. (b) n/a: not available. (c) CFD: computational fluid dynamics. 
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vascular dilation and neointimal hyperplasia [25]. However, 
decreased WSS levels over time have been found to result in 
vein dilation in a pig AVF model [25]. It is important to note 
that in these previous studies, the reported WSS values were 
usually estimated for a large region and the WSS values and 
lumen size were determined at the same time. To better 
understand any causal relationship between early WSS and 
later lumen area changes, ideally we should know WSS and 
lumen area at a higher spatial resolution in a longitudinal 
study. As mentioned above, He et al. developed an MRI-
CFD protocol that uses state-of-the-art techniques to 
characterize blood flow and calculate WSS in human AVF. 
The detailed WSS profiles within the AVF of a dialysis 
patient at several time points after AVF surgery are shown in 
Fig. (3). This figure allows us to appreciate the heterogeneity 
of WSS, how WSS spans a large range of values in the AVF 
lumen, and how WSS changes over time. 

AVG Hemodynamics 

 Synthetic vascular grafts made of expanded Teflon¨  are 
used in several other applications than hemodialysis access, 
including peripheral artery bypass and coronary artery 
bypass. Like AVG, these synthetic arterial bypass grafts 
(ABGs) also suffer from NH, which often occur at the 
downstream (i.e., distal) graft-vessel anastomosis [77]. In a 
clinical study of surveillance of infrainguinal lower limb 
grafts, stenosis tended to form at the distal anastomosis of 
the prosthetic graft [78]. It is important to note that synthetic 
ABGs, particularly those in peripheral arteries, tend to have 
much lower flow rates than AVGs (200-300 ml/min in 
synthetic ABGs as compared to 1000-2000 ml/min in AVGs) 
and therefore, WSS tends to be lower in synthetic ABGs 
(approx. 20 dyn/cm2in synthetic ABGs as compared to 

approx. 60 dyn/cm2 in AVGs) [77]. Synthetic ABGs also 
have less occurrence of turbulent flow than AVGs. Cuffed 
graft designs have been used to improve anastomotic 
hemodynamics, and have been shown to be more effective at 
preventing hyperplasia in synthetic ABGs, but have not been 
extensively researched in the extremely high WSS 
environment of AVGs [77, 79]. 

 As mentioned above, low WSS (<3 dyn/cm2) has been 
reported to increase NH development in a canine model of 
interpositional artery graft [42], whereas local elevated WSS 
(>50 dyn/cm2) has been reported to increase NH 
development in a porcine AVG model [43]. Previous studies 
regarding the impact of WSS on NH development have 
focused on large regions such as the venous anastomosis and 
have not yet investigated the longitudinal (over the time 
course of NH development) impact of local hemodynamics 
or other features of disturbed flow (such as OSI). For 
example, in Binns et al. [42], WSS in the canine model was 
obtained by estimation from PoiseuilleÕs law (Equation [2]) 
using flow rates measured with an electromagnetic flow 
meter and luminal size obtained by histology. In Misra et al. 
[43], WSS in the porcine model was also obtained by 
estimation from PoiseuilleÕs law using velocity measured at 
discrete 2D slices using cine phase-contrast MRI and luminal 
area obtained by 3D magnetic resonance angiography and 
histology. We have used the MRI-CFD approach by He et al. 
mentioned above [46] to characterize WSS in a porcine AVG 
in a more comprehensive manner [67]. 

ENDOTHELIAL CELL RES PONSES TO PHYSIOLO-
GICAL AND ARTERIOVEN OUS HEMODYNAMICS  

 The mechanobiology of endothelial cells (ECs) has been 
extensively studied in the context of arterial function, both in 

Table 2. Hemodynamics in porcine arteriovenous fistula (AVF), arteriovenous graft  (AVG), artery and vein. 
 

Pig Location of 
Measurement 

Pressure 
(mmHg) 

Flow Rate 
(ml/min) 

WSS 
(dyn/cm2) 

Strain 
(Unit -Less) Methods 

AVF 

Femoral 
Artery 

53 
a(2 days) [25] 

780 
(2 days) [25] 

900 
(2 days) [25] 

bn/a Intraluminal ultrasound flow probes for pressure 
and flow rate [25], WSS by cCFD [25] 

Femoral Vein 28 
(2 days) [25] 

650 
(2 days) [25] 

50 
(2 days) [25] n/a Intraluminal ultrasound flow probes for pressure 

and flow rate [25], WSS by cCFD [25] 

AVG 

Iliac Artery n/a 1395 
(2 weeks) [43] 

20 
(2 weeks) [43] n/a MRI for flow rate and lumen diameter [43], WSS 

by PoiseuilleÕs law [43] 

Iliac Vein n/a 

821 
(2 weeks) [43] 

 
820 

(2 weeks) [57] 

20 
(2 weeks) [43] 

n/a MRI for flow rate and lumen diameter [43, 57], 
WSS by PoiseuilleÕs law [43] 

Carotid 
Artery n/a 101 [58] n/a n/a n/a Intraluminal catheter for pressure [58] 

Iliac Artery n/a 136 [59] 416 [43] 10 [43] n/a 
Intraluminal catheter for pressure [59], MRI for 

flow rate and lumen diameter [43], WSS by 
PoiseuilleÕs law [43] 

Jugular 
Vein 

n/a 1 [58] n/a n/a n/a Intraluminal catheter for pressure [58] 

Iliac Vein n/a 9 [60] 646 [43] 6 [43] n/a 
Intraluminal catheter for pressure [60], MRI for 

flow rate and lumen diameter [43], WSS by 
PoiseuilleÕs law [43] 

Notes: (a) Time in parenthesis is post-surgery. (b) n/a: not available. (c) CFD: computational fluid dynamics. 
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homeostasis and dysfunction. Much of the pioneering work 
on mechanotransduction of blood flow in ECs was done in 
the context of atherosclerosis (see comprehensive reviews by 
Davies [80] and Malek et al. [34]). Atherosclerotic lesions 
(whose histological features are accumulation of calcium and 
fatty materials) tend to develop at locations of large arterial 
wall curvature near vascular branching points [81], with 
correspondingly complex flow as compared to a straight 
conduit arterial section where high and laminar WSS of 10-
70 dyn/cm2 occurs. In arteries, low and oscillatory WSS (±0-
4 dyn/cm2) has been linked to the localization and formation 
of atherosclerotic lesions [14, 74, 82, 83]. For this reason, it 
has been proposed that low and oscillatory WSS at the graft-
vessel junction may lead to EC dysfunction and subsequent 
NH formation at this location in ABG and also AVG [77, 
84]. However, it is important to note that the histological 
feature of neointimal hyperplasic lesions is very different 
from that of atherosclerotic lesions. NH primarily consists of 
highly proliferating vascular smooth muscle cells 
 

(SMCs) and myofibroblasts, as well as the presence of 
neovessels and inflammatory cells [33]. In addition, there 
exists an asymmetric pattern of development of NH in ABGs 
and AVGs. In ABGs, NH tends to develop at the 
downstream (i.e., distal) graft-arterial anastomosis, rather 
than the upstream (i.e., proximal) graft-arterial anastomosis 
[77]. In AVGs, NH is much more prevalent at the 
downstream venous anastomosis than the upstream arterial 
anastomosis [29]. 

 Some studies have suggested a number of means by 
which the biology of venous stenosis could be influenced by 
WSS [25, 71]. Optimal venous endothelial function has been 
associated with moderate and high WSS levels; additionally, 
reduced expression of adhesion molecules, increased 
expression of endothelial nitric oxide synthase, and reduction 
in oxidative stress have also been attributed to moderate and 
high WSS levels, though the authors did not indicate specific 
WSS values [25]. Conversely, low WSS levels have been  
 

 
Fig. (2). Magnetic resonance imaging (MRI) -to-computational fluid dynamics (CFD) pipeline. The pipeline to obtain the blood vessel 
lumen geometry serving as the structural boundary for CFD is shown in Panels A-D. Panels E-F show the pipeline for extracting blood flow 
rates to be used as CFD flow boundary conditions. (A) Contrast-free black-blood MRI was performed to image lumen geometry. An example 
DICOM image shows an axial cross-section of the arm (arrow indicates the lumen of an AVF vein). (B) Segmentation of the AVF vein and 
artery was performed on the same example DICOM image (AVF vein lumen filled green). (C) The segmented lumen from several slices 
resulted in a 3D reconstruction and (D) were meshed volumetrically. (E) Contrast-free cine phase-contrast MRI was performed over a 
cardiac cycle over a forearm AVF, and (F) blood flow rates during the cardiac cycle were extracted from the MRI data. (G) A CFD-derived 
wall shear stress (WSS) profile where the feeding artery is the vessel on the bottom and the fistula vein is the curved vessel branching off of 
the feeding artery. Reprinted from Journal of Biomechanics, Y He, C Terry, C Nguyen, S Berceli, Y Shiu, A Cheung, "Serial analysis of 
lumen geometry and hemodynamics in human arteriovenous fistula for hemodialysis using magnetic resonance imaging and computational 
fluid dynamics," 46:165-169. Copyright (2013), with permission from Elsevier [46]. 
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Fig. (3). WSS profiles in an AVF of a hemodialysis patient. 
Contour plots of the WSS values averaged over a cardiac cycle for 
MRI scans at (A) 4, (B) 5, and (C) 7 months (mos) after AVF 
creation. The highest WSS values were found at the anastomosis 
(arrow) and the region of stenosis (arrowhead) of the AVF vein at 
all 3 time points. However, AVF WSS decreased from 4 to 7 mos. 
Note that the color scale bar was adjusted for peak WSS at each 
time point and the anastomosis and artery were maintained at the 
same angle of view for all 3 time points. However, the AVF vein 
deformed over time, obscuring the view of the accessory vein at  
7 mos. In these images, the feeding artery is to the right of the 
anastomosis, the distal artery is to the left of the anastomosis, and 
the fistula vein is branching off of the artery at the anastomosis and 
the accessory vein branching off of the fistula vein just above the 
stenosis. Reprinted from Journal of Biomechanics, Y He, C Terry, 
C Nguyen, S Berceli, Y Shiu, A Cheung, "Serial analysis of lumen 
geometry and hemodynamics in human arteriovenous fistula for 
hemodialysis using magnetic resonance imaging and computational 
fluid dynamics," 46:165-169. Copyright (2013), with permission 
from Elsevier [46]. 

associated with endothelial dysfunction, reduced production 
of nitric oxide, increase in oxidative stress, increase in 
neointima formation, and a tendency toward vasoconstriction 
in the vein [25, 85]. In AVF- and AVG-specific settings, it is 
important to note that venous EC response to WSS is not 
always identical to arterial EC response. 

ECs in AVF 

 Using veins from patient AVFs, Jones et al. [86] found 
that 80-90% of fistula vein ECs showed strong staining for 
endothelin-1 as compared to control saphenous veins. 
Furthermore, when compared to those in the control vein, the 
majority of fistula vein ECs were smaller but elongated with 
several endothelial mitoses, newly divided cells, and 
hyperchromatic nuclei [86, 87]. Matrix metalloproteinase 
(MMP)-2 and MMP-9 were overexpressed at the site of 
neointima in a rat AVF model [88] and a rabbit AV shunt 
model [89]. These results indicate that MMPs play a critical 
role in neointimal lesion development in AVF veins. Wang 
et al. [90] used a uremic AVF mouse model and showed that 
increased transforming growth factor (TGF)-!1 activates 
Notch signaling in ECs of AVFs; accelerated neointima 
formation and ultimately AVF failure occur following the 
activated Notch signaling. 

 Studies by Sho et al. were focused on arterial remodeling 
[91]. Using a rabbit left common carotid artery-left jugular 
vein AVF model, Sho et al. found that arterial EC density 
increased from 2814 ± 183/mm2 under pre-surgery physio-
logical conditions to 4917 ± 501/mm2 after being exposed to 
high flow conditions for 3 days after AVF creation [91]. The 
gene expression of vascular endothelial growth factor 
(VEGF) was upregulated 13-fold 1 day after AVF creation, 
proceeding endothelial cell proliferation. The gene 
expression of VEGF and VEGF receptor-2 was upregulated 
25-fold and 33-fold, respectively, 3 days after AVF creation. 
A strong detection of VEGF protein was seen in ECs from 1 
to 3 days after AVF creation. These data suggest that ECs 
contribute to arterial remodeling. 

ECs in AVG 

 Both patients receiving AVGs and porcine AVG models 
have increased levels of hypoxia-inducible factor 1-" (HIF -
1") expression in locations of restenosis [92, 93]. In stenotic 
vein samples obtained from 6 AVG patients upon graft 
failure, a large range of protein factors associated with HIF-
1" were upregulated within 6 cm of the graft-venous 
anastomosis, including HIF-1" itself (1.8-fold vs control 
vein), macrophage migration inhibition factor (8.6-fold), 
MMP-2 (2.8-fold) and MMP-9 (2.5-fold), and tissue 
inhibitor of MMPs-1 (TIMP-1) (8.9-fold) [93]. In a porcine 
model of AVG, many of these factors were increased in both 
the vein and also artery adjoining the graft, including MMP-
2 and -9 [94, 95], and TIMP-1 and -2 [94]. In another study 
using porcine AVG, significant MMP-9 and HIF-1" 
expression was seen at the venous anastomosis, coincident 
with the development of NH [96]. Thus, HIF-1 " and MMPs 
seem to be critical in the formation of NH in AVG. 

 As mentioned above, synthetic ePTFE grafts are also 
used as ABGs, which also suffer from NH formation. In a 
baboon model of arterial-arterial grafting, an ePTFE graft 
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was placed between the ascending aorta and iliac artery 
(n=15) to investigate the expression of bone morphogenetic 
proteins 2, 4, and 5 (BMP-2, -4, and -5). BMP-2 mRNA 
expression reached a maximum of 1.6-fold increase (n=5, 
p<0.05) at Day 1, while BMP-4 and -5 expression reached a 
maximum of 1.73- and 1.32-fold, respectively, at Day 7 
(n=5, p<0.05) [97]. Additionally, extracts from the neointima 
demonstrated a 2-fold increase in BMP-4 protein by Western 
blot, and BMP-4 binding receptors BMPR-IA, -IB, and -II 
stained positive by immunohistochemistry in the neointima. 
However, it is not yet known whether BMP is involved in 
the formation of NH in AVGs. 

CONFOUNDING FACTORS MODULATING THE 
IMPACT OF SHEAR STRESSON VENOUS REMODELING 

 CKD patients often have factors other than kidney failure 
that may affect their vasculature, and it is possible that 
individual patientsÕ blood vessels may respond differently to 
the same hemodynamic stresses. This could be attributed to 
heterogeneity in the vascular wall biology, including 
endothelial function and clinical factors such as age, diabetes 
and stages of CKD. For example, it is known that diabetes 
leads to increased arterial stiffness and therefore, may 
compromise the ability of the feeding artery to expand 
following an AVF creation surgery. Thus, blood vessels 
from diabetic CKD and non-diabetic CKD patients may react 
to the same arteriovneous flow differently. 

 Endothelial dysfunction is especially significant in the 
end-stage renal disease (ESRD) population due to the 
negative impacts of uremia and oxidative stress on the 
endothelium [98]. Indeed, endothelium-dependent 
vasodilation has been found to be markedly impaired in 
chronic hemodialysis patients [98]. Vascular dysfunction due 
to chronic uremia in CKD patients can be delineated into 
four categories, reviewed by Brunet P et al. [99]:  
(a) increased rate of atherosclerosis; (b) increased arterial 
stiffness; (c) increased formation of vascular calcifications; 
and (d) impaired vascular repair and increased NH 
formation. Uremia is associated with a range of elevated 
toxins, including guanidines, advanced glycation end 
products (AGE), p-cresyl sulfate, platelet diadenosine 
polyphosphates, and indoxyl sulfate [99]. These toxins are 
associated with increases in arterial stiffness, calcification, 
impaired vessel wound healing responses, and neointimal 
hyperplasia [99]. Increased asymmetric dimethyarginine 
(ADMA) and AGE leads to a decrease in nitric oxide 
bioavalibility, leading to impaired dilatory function of 
arteries, as well as impaired signaling for nitric oxide-related 
processes such as wound healing [100]. Thus, blood vessels 
from CKD patients may react to the same arteriovneous flow 
differently, depending on the endothelial damages by 
uremia. 

OTHER RELEVANT CONSI DERATIONS 

The Role of Smooth Muscle Cells (SMCs) 

 Although this review is focus on ECs, it is important to 
note that, when the endothelial layer becomes stripped away, 
luminal blood flow can exert forces directly on SMCs. 
Surgical trauma such as AV fistula creation and AV grafting 

can contribute to such denudation of the endothelial layer. 
The destruction of the endothelial monolayer can also be 
attributed to high shear stress (>400 dyn/cm2) [34]. SMC 
proliferation is a key feature of NH, with the vast majority of 
neointimal cells being SMCs (77.0 ± 12.0% in a clinical 
study by Rekhter et al. [101]) [21, 102]. SMCs are 
responsive to WSS (see a comprehensive review by Shi and 
Tarbell [103]). Neointimal hyperplasia may be a result of 
upregulation of certain mechanotransduction pathways in 
SMCs induced by elevated levels of WSS. Sho et al. 
demonstrated that in a rabbit carotid AVF model of flow-
induced arterial remodeling, SMCs contribute to arterial 
remodeling with SMC proliferation and migration occurring 
after EC proliferation [91]. The role of SMCs in flow-
induced venous remodeling in the AV access setting remains 
to be explored. 

The Role of Circumferential Wall Stress (CWS) 

 In addition to WSS, ECs and SMCs are also exposed to 
CWS (Fig. 2). Studies by Price et  al. and Pries et al. [104, 
105] suggested that WSS and CWS dictate recruitment and 
differentiation of SMCs. Van Gieson et al. [106] observed 
that increased pressure led to increased diameter and wall 
strain in microvessels, which subsequently led to increased 
CWS, and they hypothesized that the differentiation of 
immature SMCs was catalyzed by the local mechanical 
stimulus of increased wall strain. AVG implantation with 
subsequent shunting of arterial flow into the vein results in 
an increase in CWS at the venous wall. Substantial research 
has been conducted to investigate the effect of CWS on 
arterial remodeling and cell function, but not for the vein. 
Increased blood pressure, wall tension, and/or CWS have 
been shown to induce arterial wall thickening, particularly in 
the medial layer of arteries [38]. Studies have reported a 
relationship between varicosity development and increased 
blood pressure in the vein [107-112]. Currently few reports 
linking CWS and pressure to venous NH formation exist. 

Catheter and Stenosis 

 Although this review is focused on AVFs and AVGs, 
aberrant blood flow also occurs in central venous catheters 
(CVCs) which are inserted into a central vein such as the 
vena cava, internal or external jugular, or femoral vein to 
serve as a temporary access to a patientÕs blood stream for 
hemodialysis [113]. Ideally, CVCs are as wide and short as 
feasible for the patient [17]. This is due to less blood flow 
resistance the larger the diameter and the shorter the length 
of the catheter. The recommended blood flow rate for a CVC 
is 300 ml/min, with pre-pump arterial pressure less than  
250 mmHg [17]. Failure to do so can lead to thrombosis and 
stenosis, as well as external fibrin sheath formation [17]. 
Aberrant flow-induced thrombosis in CVC is beyond the 
scope of this review. 

CONCLUDING REMARKS  

 AVF non-maturation and AVG stenosis are important 
problems and yet currently no clinical therapies are available 
to significantly promote AVF maturation or prevent 
neointimal hyperplasia in AVGs. This review has discussed 
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the roles of fluid-wall shear stress and endothelial cells on 
AV access problems and provided an overview of the 
methods for characterizing shear stress in AV access. In the 
coming years, investigations should aim at understanding 
how different vascular wall cells (i.e., endothelial cells and 
smooth muscle cells) integrate various hemodynamics 
stresses (i.e., pressure, circumferential wall stress, fluid-wall 
shear stress), as well as confounding factors that modulate 
the impact of these hemodynamic stresses on cells, thereby 
creating a coherent theory of the contributions of aberrant 
hemodynamic stresses to AV access failure. 
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